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Chapter Nine 

Thin Cylinders and Shells 

9.1 Thin cylinders under internal pressure 

When a thin-walled cylinder is subjected to internal pressure, three mutually 

perpendicular principal stresses will be set up in the cylinder material, namely the 

circumferential or hoop stress, the radial stress and the longitudinal stress. Provided 

the ratio of thickness to inside diameter (t/d) of the cylinder is less than 1/20. It is 

reasonable to assume the hoop and longitudinal stresses are constant across the wall 

thickness, and the magnitude of the radial stress set up is small in comparison with the 

hoop and longitudinal stresses that it can be neglected.  

9.2 Hoop or circumferential stress  

Hoop stress is the stress which is set up in resisting the bursting effect of the 

applied pressure and can be most conveniently treated by considering the equilibrium 

of half of the cylinder as shown in Fig. 9.1. 

 

Fig. 9.1 Half of a thin cylinder subjected to internal pressure.  

Total force on half-cylinder owing to internal pressure = p × projected area = p × dL 

Total resisting force owing to hoop stress σH set up in the cylinder walls 

                      = 2σH × Lt 

∴                                                                2σH Lt = pd L 

∴           circumferential or hoop stress  σH = 
pd

2t
                                                         (9.1) 
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9.3 Longitudinal stress 

Consider the cylinder shown in Fig. 9.2.  

Total force on the end of the cylinder owing to internal pressure 

                                               = pressure × area = p ×
π d

 2

4
   

 

Fig. 9.2 Cross-section of a thin cylinder. 

Area of metal resisting this force = π d t (approximately) 

∴                                               stress set up = 
force

area
 = p ×

π d
 2

/4

π d t
 = 

pd

4t
  

longitudinal stress  σL = 
pd

4t
                                           (9.2) 

9.4 Changes in dimensions  

(a) Change in length  

The change in length of the cylinder may be determined from the longitudinal 

strain, i.e. neglecting the radial stress. 

                                    longitudinal strain = 
1

E
 [σL − v σH] 

and                                change in length = longitudinal strain × original length 

                     = 
1

E
 [σL − v σH] L 

∴  change in length  = 
pd

4t E
 [1 − 2v] L                                      (9.3) 
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(b) Change in diameter  

The change in diameter may be determined from the strain on a diameter. 

change in diameter  = 
pd 2

4t E
 [2 − v]                                                (9.4) 

(c) Change in internal volume (For Cylinders)  

Change in internal volume   = 
pd

4t E
 [5 − 4v]V                                      (9.5) 

9.5 Thin spherical shell under internal pressure  

Because of the symmetry of the sphere the stresses set up to internal pressure will 

be two mutually perpendicular hoop or circumferential stresses of equal value and a 

radial stress. The thin sphere having thickness to diameter ratios (t/d) less than 1/20. 

The stress system is one of equal biaxial hoop stresses. 

Force on half-sphere owing to internal pressure 

                                      = pressure × projected area 

                                       = p ×
π d

 2

4
   

              Resisting force = σH × πdt            (approximately)  

                                                                                          Fig. 9.4 Half of a thin sphere. 

∴                                         p ×
π d

 2

4
 = σH × πdt  

or                                                   σH = 
pd

4t
 

circumferential or hoop stress  = 
pd

4t
                                                                             (9.6) 

9.6 Change in internal volume (For spheres)  

∴            change in internal volume  = 
3pd

4t E
 [1 − v]V                                                  (9.7) 
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9.7 Vessels subjected to fluid pressure 

If a fluid is used as the pressurisation medium the fluid itself will change in 

volume as pressure is increased and this must be taken into account when calculating 

the amount of fluid which must be pumped into the cylinder in order to raise the 

pressure by a specified amount, the cylinder being initially full of fluid at atmospheric 

pressure.  

Now the bulk modulus of a fluid is defined as follows: 

bulk modulus K = 
volumetric stress

volumetric strain
 

where, in this case, volumetric stress  =  pressure p 

and                        volumetric strain   = 
change in volume

original volume
 = 

δV

V
 

∴                                                     K  = 
p

δV V⁄
 = 

pV

δV 
 

        change in volume of fluid under pressure  = 
pV

K 
                                               (9.8) 

Extra fluid required to raise cylinder pressure by p 

= 
pd

4t E
 [5 − 4v]V +  

PV

K 
                                       (9.9) 

Similarly, for spheres, the extra fluid required is 

                                                              = 
3pd

4t E
 [1 − v]V +  

PV

K 
                                       (9.10) 
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9.8 Cylindrical vessel with hemispherical ends 

Consider the vessel shown in Fig. 9.5 in which the wall thickness of the cylindrical 

and hemispherical portions may be different (this is sometimes necessary since the 

hoop stress in the cylinder is twice that in a sphere of the same radius and wall 

thickness).  

 
Fig. 9.5 Cross-section of a thin cylinder with hemispherical ends. 

(a) For the cylindrical portion 

hoop or circumferential stress =  σ
Hc

 = 
pd

2𝑡c

 

                   longitudinal stress  =  σ
Lc

 = 
pd

4𝑡c

 

∴                                    hoop or circumferential strain  = 
1

E
 [σHc

− v σLc
] 

                                                            = 
pd

4𝑡cE
 [2 − v] 

(b) For the hemispherical ends 

hoop stress  =  σ
Hs

 = 
pd

4𝑡s

 

           hoop strain  = 
1

E
 [σHs

− v σHs
] 

                 = 
pd

4𝑡sE
 [1 − v] 
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Thus, equating the two strains yields, 

 
pd

4𝑡cE
 [2 − v] = 

pd

4𝑡sE
 [1 − v]          

𝑡s

𝑡c

 = 
(1 − v)

(2 − v)
                                                       (9.11) 

With the normally accepted value of Poisson’s ratio for general steel work of 0.3, the  

thickness ratio becomes 

𝑡s

𝑡c

 = 
0.7

1.7
 

The thickness of the cylinder walls must be approximately 2.4 times that of the 

hemispherical ends for no distortion of the junction to occur. 

9.10 Effects of end plates and joints 

The preceding sections have all assumed uniform material properties throughout 

the components and have neglected the effects of endplates and joints which are 

necessary requirements for their production. In general, the strength of the components 

will be reduced by the presence of, for example, riveted joints, and this should be taken 

into account by the introduction of a joint efficiency factor η into the equations 

previously derived. 

For thin cylinders: 

hoop stress   σH  = 
pd

2t η
L

 

where ηL is the efficiency of the longitudinal joints, 

longitudinal stress   σL  = 
pd

4t η
C

 

where ηC is the efficiency of the circumferential joints. 

For thin spheres: 

hoop stress   σH  = 
pd

4t η
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Example 9.1  

A thin cylinder 75 mm internal diameter, 250 mm long with walls 2.5 mm thick is 

subjected to an internal pressure of 7 MN/m2. Determine the change in internal 

diameter and the change in length. In addition to the internal pressure, the cylinder is 

subjected to a torque of 200 N m, find the magnitude and nature of the principal stresses 

set up in the cylinder. E = 200 GN/m2. v = 0.3.  

Solution: 

(a) From eqn. (9.4),  change in diameter  = 
pd

 2

4t E
 (2 − v) 

                                                                  = 
7 × 106 × 752 × 10−6 

4 × 2.5 × 10−3 × 200 × 109
 (2 − 0.3) 

                       = 33.4 × 10−6 m 

             = 33.4  𝝁m 

(b) From eqn. (9.3),  change in length  = 
pdL

4t E
 (1 − 2v) 

                                                              = 
7 × 106 × 75 × 10−3 × 250 × 10−3 

4 × 2.5 × 10−3 × 200 × 109
 (1 − 0.6) 

     = 26.2  𝝁 m 

(c)                                     Hoop stress σH = 
pd

2t
 = 

7 × 106 × 75 × 10−3

2 × 2.5 × 10−3
 

           = 105  MN/m2 

longitudinal stress  σL = 
pd

4t
 = 

7 × 106 × 75 × 10−3

4 × 2.5 × 10−3
 

            = 52.5  MN/m2 

In addition to these stresses a shear stress τ is set up. 
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From the torsion theory, 

T

J
 = 

τ

R
     ∴     τ = 

TR

J
 

Now                           J = 
π (804 −  754) × 10−12

32
 =  0.92 × 10−6 m4 

Then                                     shear stress  τ = 
200 × 40 × 10−3

0.92 × 10−6
 =  8.695 MN/m2 

 

Fig. 9.7 Enlarged view of the stresses acting on an element in the surface of a thin 

cylinder subjected to torque and internal pressure. 

The principal stresses are given by 

σ1   and   σ2  = 
1

2
 (σx + σy) ± 

1

2
√(σx − σy)

2
 + 4 τ x y

2  

                                             = 
1

2
 (105 + 52.5) ± 

1

2
√(105 − 52.5)2 + 4 (8.695)

2
 

                                                       = 
1

2
 × 157.5 ± 

1

2
√(2756.25  + 302.45) 

                                                       = 78.75 ± 27.652 

Then                                    σ1 =  106.4 MN/m2      and       σ2 =  51.1 MN/m2 

The principal stresses are 

106.4 MN/m2     and      51.1 MN/m2      both tensile. 



Chapter Nine                    Mechanics of Materials                   Thin Cylinders and Shells 

Dr. Qahtan A. Jawad                                  Mechanical Engineering Department                              Page 66 
 

Example 9.2  

A cylinder has an internal diameter of 230 mm, has walls 5 mm thick and is 1 m long. 

It is found to change in internal volume by 12.0 × 10  ̶  6 m3 when filled with a liquid at 

a pressure p. If E = 200 GN/m2 and v = 0.25, and assuming rigid end plates, determine: 

(a) the values of hoop and longitudinal stresses. 

(b) the modifications to these values if joint efficiencies of 45 % (hoop) and 85 % 

(longitudinal) are assumed.  

(c) the necessary change in pressure p to produce a further increase in internal volume 

of 15 %. The liquid may be assumed incompressible.  

Solution: 

(a) From eq. (9.5) 

change in internal volume   = 
pd

4t E
 (5 − 4v)V 

original volume V   = 
π

4
 × 2302 × 10−6 × 1 =  41.6 × 10−3 m3  

Then           change in volume  = 12 × 10−6 = 
P × 230 × 10−3 × 41.6 × 10−3

4 × 5 × 10−3 × 200 × 109
 (5 − 1) 

Thus                                                                 P  = 
12 × 10−6 × 4 × 5 × 10−3 × 200 × 109 

 230 × 10−3 × 41.6 × 10−3 × 4
 

                             =  1.25 MN/m2 

Hence,                                          hoop stress  = 
pd

2t
 = 

1.25 × 106 × 230 × 10−3

2 × 5 × 10−3
 

                             =  28.8 MN/m2 

longitudinal stress  = 
pd

4t
 = 

1.25 × 106 × 230 × 10−3

4 × 5 × 10−3
 

    = 14.4  MN/m2 
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(b) Hoop stress (acting on the longitudinal joints) 

                                    Hoop stress  = 
pd

2t η
L

 = 
1.25 × 106 × 230 × 10−3

2 × 5 × 10−3 × 0.85
 

                             =  33.9 MN/m2 

Longitudinal stress (acting on the circumferential joints) 

                    = 
pd

4t η
c

 = 
1.25 × 106 × 230 × 10−3

4 × 5 × 10−3 × 0.45
 

    = 32  MN/m2 

(c) Since the change in volume is directly proportional to the pressure, the necessary 

15 % increase in volume is achieved by increasing the pressure also by 15 %. 

Necessary increase in p = 0.15 × 1.25 × l06 

= 1.86 MN/m2 

Example 9.3  

(a) A sphere, 1 m internal diameter and 6 mm wall thickness, is to be pressure-tested 

for safety purposes with water as the pressure medium. Assuming that the sphere is 

initially filled with water at atmospheric pressure, what extra volume of water is 

required to be pumped in to produce a pressure of 3 MN/m2 gauge? For water, K = 2.1 

GN/m2.  

(b) The sphere is placed in service and filled with gas until there is a volume change of  

72 × 10  ̶  6 m3. Determine the pressure exerted by the gas on the walls of the sphere.  

(c) To what value can the gas pressure be increased before failure occurs according to 

the maximum principal stress theory of elastic failure? 

For the material of the sphere E = 200 GN/m2, v = 0.3 and the yield stress σy in simple 

tension = 280 MN/m2. 

Solution: 
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(a)                              Bulk modulus K = 
volumetric stress

volumetric strain
 

Now                      volumetric stress = pressure p = 3 MN/m2 

and                        volumetric strain = change in volume  ÷  original volume 

                                                     K  = 
p

δV V⁄
 

∴            change in volume of water  = 
pV

K 
 = 

3 × 106

2.1 × 109 
 × 

4π

3
 (0.5)

3
 

             = 0.748  × 10−3  m3 

(b) From eqn. (9.7) the change in volume is given by 

          change in internal volume  δV  = 
3pd

4t E
 (1 − v)V  

∴                                            72 × 10−6 = 
3p × 1 × 

4π
3

 (0.5)
3 (1 − 0.3) 

4 × 6 × 10−3 × 200 × 109
  

∴                                            p  = 
72 × 10−6 × 4 × 6 × 200 × 106 × 3 

3 × 4π (0.5)
3 × 0.7 

  

        =  314 × 103  N/m2  =  314  kN/m2 

(c) The maximum stress set up in the sphere will be the hoop stress, 

σ1 =  σH  = 
pd

4t
 

Now, according to the maximum principal stress theory, failure will occur when the 

maximum principal stress equals the value of the yield stress of a specimen subjected 

to simple tension, 

when                                                σ1 =  σy = 280  MN/m2 

                                                  280 × 106 = 
pd

4t
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                            p = 
280 × 106 × 4 × 6 × 10−3 

1
 

                                              =  6.72 × 106  N/m2  =  6.72  MN/m2 

The sphere would therefore yield at a pressure of 6.7 MN/m2. 

Problems 

9.1 Determine the hoop and longitudinal stresses set up in a thin boiler shell of circular 

cross-section, 5m long and of 1.3 m internal diameter when the internal pressure 

reaches a value of 2.4 bar (240 kN/m2). What will then be its change in diameter? The 

wall thickness of the boiler is 25 mm. E = 210 GN/m2, v = 0.3. 

[6.24, 3.12 MN/m2; 0.033 mm] 

9.2 Determine the change in volume of a thin cylinder of original volume                      

65.5 × 10  ̶  3 m3 and length 1.3 m if its wall thickness is 6 mm and the internal pressure 

14 bar (1.4 MN/m2). For the cylinder material E = 210 GN/m2, v = 0.3. 

[17.5 × 10  ̶  6 m3]  

9.3 What must be the wall thickness of a thin spherical vessel of diameter 1 m if it is 

to withstand an internal pressure of 70 bar (7 MN/m2) and the hoop stresses are limited 

to 270 MN/m2?                                                                                                [12.96 mm] 

9.4 A steel cylinder 1 m long, of 150 mm internal diameter and plate thickness 5 mm, 

is subjected to an internal pressure of 70 bar (7 MN/m2), the increase in volume owing 

to the pressure is 16.8 × 10  ̶  6 m3. Find the values of Poisson's ratio and the modulus of 

rigidity. Assume E = 210 GN/m2.                                                   [0.299; 80.8 GN/m2]  

9.5 Define bulk modulus K, and show that the decrease in volume of a fluid under 

pressure p is pV/K. Hence derive a formula to find the extra fluid which must be 

pumped into a thin cylinder to raise its pressure by an amount p. 

How much fluid is required to raise the pressure in a thin cylinder of length 3 m, 

internal diameter 0.7 m, and wall thickness 12 mm by 0.7 bar (70 kN/m2)?                          

E = 210 GN/m2 and v = 0.3 for the material of the cylinder and K = 2.1 GN/m2 for the 

fluid.                                                                                                    [5.981 × 10  ̶  3 m3]  
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9.6 A spherical vessel of 1.7 m diameter is made from 12 mm thick plate, and it is to 

be subjectd to a hydraulic test. Determine the additional volume of water which it is 

necessary to pump into the vessel, when the vessel is initially just filled with water, in 

order to raise the pressure to the proof pressure of 116 bar (11.6 MN/m2).  

The bulk modulus of water is 2.9 GN/m2. For the material of the vessel, E = 200 GN/m2, 

v = 0.3.                                                                                                [26.14 × 10  ̶  3  m3] 

9.7 A thin-walled steel cylinder is subjected to an internal fluid pressure of 21 bar (2.1 

MN/m2). The boiler is of 1 m inside diameter and 3 m long and has a wall thickness of 

33 mm. Calculate the hoop and longitudinal stresses present in the cylinder and 

determine what torque may be applied to the cylinder if the principal stress is limited 

to 150 MN/m2.                                                                       [35, 17.5 MN/m2; 6 MNm]  

9.8 A thin cylinder of 300 mm internal diameter and 12 mm thickness is subjected to 

an internal pressure p, while the ends are subjected to an external pressure of 1/2 p. 

Determine the value of p at which elastic failure will occur according to (a) the 

maximum shear stress theory, and (b) the maximum shear strain energy theory, if the 

limit of proportionality of the material in simple tension is 270 MN/m2. What will be 

the volumetric strain at this pressure? E = 210 GN/m2; v = 0.3.  

[21.6, 23.6 MN/m2, 2.289 × 10  ̶  3, 2.5 × 10  ̶  3]    

9.9 A brass pipe has an internal diameter of 400 mm and a metal thickness of 6 mm. A 

single layer of high tensile wire of diameter 3 mm is wound closely round it at a tension 

of 500 N. Find (a) the stress in the pipe when there is no internal pressure; (b) the 

maximum permissible internal pressure in the pipe if the working tensile stress in the 

brass is 60 MN/m2; (c) the stress in the steel wire under condition (b). Treat the pipe as 

a thin cylinder and neglect longitudinal stresses and strains. ES = 200 GN/m2;                  

EB = 100 GN/m2.                                                       [27.8, 3.04 MN/m2; 104.8 MN/m2]  
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9.10 A cylindrical vessel of 1 m diameter and 3 m long is made of steel 12 mm thick 

and filled with water at 16°C. The temperature is then raised to 50°C. Find the stresses 

induced in the material of the vessel given that over this range of temperature water 

increases 0.006 per unit volume. (Bulk modulus of water = 2.9 GN/m2; E steel = 210 

GN/m2 and v = 0.3.) Neglect the expansion of the steel owing to temperature rise. 

[663, 331.5 MN/m2] 

9.11 A 3 m long aluminium-alloy tube, of 150 mm outside diameter and 5 mm wall 

thickness, is closely wound with a single layer of 2.5 mm diameter steel wire at a 

tension of 400 N. It is then subjected to an internal pressure of 70 bar (7 MN/m2).  

(a) Find the stress in the tube before the pressure is applied. 

(b) Find the final stress in the tube.  

EA = 70 GN/m2; vA = 0.28; Es = 200 GN/m2                                    [ - 32, 20.5 MN/m2]  

9.12 (a) Derive the equations for the circumferential and longitudinal stresses in a thin 

cylindrical shell. 

(b) A thin cylinder of 300 mm internal diameter, 3 m long and made from 3 mm thick 

metal, has its ends blanked off. Working from first principles, except that you may use 

the equations derived above, find the change in capacity of this cylinder when an 

internal fluid bressure of 20 bar is applied. E = 200 GN/m2; v = 0.3.   [201 × 10  ̶  6 m3]  

9.13 Show that the tensile hoop stress set up in a thin rotating ring or cylinder is given 

by:  

σH = ρ ω2 r2 

Hence determine the maximum angular velocity at which the disc can be rotated if the 

hoop stress is limited to 20 MN/m2. The ring has a mean diameter of 260 mm.  

[3800 rev/min] 

 

 

 


